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The effect of Rashba spin-orbit coupling on the spin interference in a noninteracting one-dimensional ring
connected to two leads is studied theoretically within the nonequilibrium Greens’ function formalism. We
compute the charge and spin currents and analyze their Aharonov-Bohm oscillations. The geometry of the
system is conveniently described by the angle � between the two leads. We show that for �=180° �i.e., for
symmetrically coupled leads�, a good filtering of up- or down-spin orientation is obtained around half-integer
multiples of � /�0. These particular flux values are degeneracy points for clockwise and counterclockwise
propagating states, corresponding to the same spin orientation in the local spin frame of the ring. In contrast,
for the asymmetric coupling, i.e., �=135°, the filter efficiency is maximum around integer multiples of � /�0.
The numerical results suggest that the spin filtering is obtained when the clockwise or counterclockwise states
interfere destructively. It turns out that the spin filtering regime is stable against variations in the bias applied
on the system. The quasiperiodic oscillations of the charge current, as a function of the Rashba strength, are
obtained and discussed.
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I. INTRODUCTION

Quasi-one-dimensional semiconductor rings are ideal can-
didates for testing quantum coherence at nanoscale and the
recent field of mesoscopic interferometry is up to a good
extent devoted to such systems. Traditionally, the quantum
interference in the ring is tuned by the perpendicular mag-
netic field and results in the celebrated Aharonov-Bohm os-
cillations of the conductance in open rings or of the persis-
tent currents in closed rings.1 Recently, it has been realized
that the spin-orbit interaction �SOI� offers an alternative way
of observing interference effects in quantum rings.2 The
method is efficient because, on one hand, the SOI can be
nowadays controlled by a gate voltage placed in the vicinity
of the sample3–5 and, on the other hand, the Rashba SOI
strength in confined structures is considerably larger than in
vacuum.6 For a structure subjected to a constant magnetic
field along the z axis, the confinement potential restricting
the electronic motion to the x-y plane leads to the following
expression of the spin-orbit coupling:

Hso =
�

�
�� ∧ �− i� � − eA��z, �1�

where � is the spin-orbit strength, which can be computed
from the kp theory.2 The key point is that � contains the band
gap, which is considerably larger that the Dirac gap.

Theoretically, it was predicted7 that by varying the
Rashba parameter �, one could control the spin interference
because the spin-orbit interaction removes the spin degen-
eracy and brings in different Aharonov-Casher phases of the
wave functions associated to different spin states. Using this
idea, Bergsten et al.8,9 were able to measure Aharonov-
Casher oscillations in an array of quantum ring arrays.

From the theoretical point of view, the spin interference in
Rashba rings was extensively studied both in closed and
open geometries. Since an exhaustive account on the
previous studies is quite impossible, we shall just

briefly review some of them. The persistent currents in
quasi-one-dimensional closed rings were studied by Spletts-
toesser et al.10 within a continuous model, special attention
being paid to the subtle definition of the spin current in the
ring. Using the Landauer formula, Frustaglia and Richter11

obtained almost periodic oscillations of the conductance of
one-dimensional and two-dimensional rings as a function of
the Rashba parameter. Molnár et al.12 calculated the trans-
mittance of the ring at finite temperature, emphasizing tran-
sitions between maxima and minima in the Aharonov-Bohm
oscillations at different values of the Rashba parameter.

Nikolić et al.13 calculated both the conductance of many-
channel Rashba rings and the spin Hall conductance using
the Keldysh technique �see also the recent review14�. Re-
cently, Borunda et al.15 investigated the electron and hole
rings with strong spin-orbit interaction and emphasized the
role of the carrier density,15 and Stepanenko et al.16 studied
the differential conductance of heavy-hole rings in order to
discern and compare the contributions of the Rashba and
Dresselhaus spin-orbit couplings.

The growing interest in mesoscopic rings with tunable
SOI comes also from spintronics, where one needs spin-
polarized currents. The natural idea is then to exploit the
tunability of the Rashba coupling within the ring in order to
suppress �in ideal cases� or to considerably inhibit currents
associated to one spin orientation while allowing the other
one to escape into the leads. Such a device is called a spin
filter. The natural generalization of the spin filter device is
the spin splitter, namely, a three lead ring, which is able to
deliver a spin-up current in one output lead and a spin-down
current in the other lead. As shown by Földi et al.17 in the
framework of scattering theory, one can find a suitable se-
quence of parameters for the spin splitter operation.

Most of the theoretical papers on spin filters and splitters
address two problems: �i� the energy dependence of the Lan-
dauer conductance/magnetoconductance at a given Rashba
strength; �ii� the modulation of the ring conductance when
varying the Rashba strength.18–22 Capozza et al.23 investi-

PHYSICAL REVIEW B 81, 035326 �2010�

1098-0121/2010/81�3�/035326�9� ©2010 The American Physical Society035326-1

http://dx.doi.org/10.1103/PhysRevB.81.035326


gated the oscillations of the conductance taking both
Aharonov-Bohm and spin-orbit Aharonov-Casher phases
into account.

Bellucci and Onorato24 emphasized that the spin filtering
operation cannot be implemented in homogeneous rings in
the absence of a magnetic field; they proposed instead to add
a nonmagnetic �-type barrier in order to break the time-
reversal symmetry. In a recent paper, Cohen et al.25 investi-
gated the possibility to operate molecular rings as spin filters
and splitters. In these systems, the Zeeman term seems to be
the only way to separate the spins as the Rashba and Dressel-
haus are too small.

The main aim of this work is to investigate the spin fil-
tering properties of a Rashha interferometer coupled to two
leads and subjected to a finite bias. We compute the spin and
charge currents and discuss the Aharonov-Bohm oscillations
as a function of magnetic field and Rashba strength. We also
investigate the filter efficiency for different locations of the
contacts to the leads �i.e., for symmetric or asymmetric cou-
pling�. This aspect is important and should be relevant for
experiments. As shown by Aeberhard et al.,26 the effect of
the asymmetric coupling to the leads is a partial lifting of the
conductance zeros. In this work, we show that the asymmet-
ric coupling strongly influences the efficiency of the spin
filter. To calculate the spin filtering properties ring-shaped
interferometers, we employ the nonequilibrium Green-
Keldysh formalism, which allows the calculation of steady-
state currents in the nonlinear regime. We also include the
Zeeman coupling and, therefore, our results take into account
the dependence of the tilt angle on the local spin frame �if
the Zeeman coupling is disregarded, one has a single tilt
angle, depending only on the Rashba coupling and on the
ring radius�.

The present model starts from the Hamiltonian proposed
by Meijer et al.,27 which describes a quasi-one-dimensional
ring. This Hamiltonian takes properly into account the con-
fining potential that defines the ring and was extensively
used in many studies on the Rashba interference.10,11,13 In
view of the numerical simulations, we discretize this Hamil-
tonian by choosing an appropriate number of sites the part of
the rings’ spectrum that contributes to transport coincides
with the same region from the continuous spectrum. There-
fore, our results are relevant for the continuous systems as
well. As in most other approaches to the spin interference in
a Rashba ring, we do not include the effect of the electron-
electron interaction; this approximation seems quite
reasonable.10 However, in the case of rings with embedded
or side-coupled dots,28,29 the intradot Coulomb interaction
must be taken into account.

The rest of the paper is organized as follows. Section II
contains the formalism and presents relevant equations for
the spin currents and Green functions, Sec. III contains the
discussion of the numerical results, while Sec. IV is left to
conclusions and open problems.

II. FORMALISM

We consider noninteracting electrons moving in a ring of
radius R, which is subjected to a constant perpendicular mag-

netic field and also coupled to two one-dimensional leads, as
shown in Fig. 1. It should be understood that the electrons
are forced to move along the ring by a suitable confining
potential. Assuming that only the lowest radial subband is
important for the transport processes, the Hamiltonian reads
as �see Meijer et al.27�

HR =
�2

2m�R2�i
�

��
+

�

�0
�2

−
�

R
�r�i

�

��
+

�

�0
� − i

�

2R
��

+ ��z�z, �2�

where � is the polar coordinate, � is the flux associated with
a constant perpendicular magnetic field B, and � is the
strength of the Rashba coupling. �0 is the unit flux quantum
and ��z=g�BB. The matrices �r and �� are defined as usual,

�r = � 0 e−i�

ei� 0
�, �� = � 0 − ie−i�

iei� 0
� . �3�

The spectrum and eigenfunctions of HR are known and
were extensively used in the study of persistent currents in
closed rings.10 In the transport problem at hand, we shall use
a discretized version of the Hamiltonian in Eq. �2�; for the
simplicity of writing, we use the same notation for the lattice
Hamiltonian. We denote by N the number of sites describing
the ring, and we define a site-indexed angle �p=2	p /N. In
the absence of the Rashba coupling, the eigenfunctions of the
discretized ring are easily shown to be

�
l� =
1

	N


p=1

N

eil�p�p� , �4�

where the orbital quantum number l=0, �1, . . . ,
� �N /2−1� ,N /2 �we take N even without loss of generality�.
Due to the Rashba coupling, one has to introduce a local spin
frame characterized by tilt angles �l. Let 
ls be the

|+>

|−>

θ

βα

B

FIG. 1. �Color online� The sketch of the Rashba ring coupled
symmetrically to two semi-infinite leads and subjected to a perpen-
dicular magnetic field B. There are two spin representations: on the
leads, the spin orientation is given by the spinors �↑ ,↓�, while in the
ring one should use the proper spinors with respect to the local spin
frame defined in the text. We denote them by �+� and �−�. For a
given orbital quantum number l, they are given by Eqs. �5� and �6�.
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eigenfunctions of the ring and s= �1 the spin quantum num-
ber in the local spin frame. Then one can show by direct
calculation that �
l+� and �
l−� are given by

�
l+� =� cos��l

2
��
l�

sin��l

2
��
l+1� � �5�

�
l−� =�− sin��l

2
��
l�

cos��l

2
��
l+1� � , �6�

provided that the angle �l is constructed such that the off-
diagonal elements of HR in the basis 

ls� vanish. Straight-
forward calculations lead to explicit forms for the tilt angle
and for the eigenvalues Els associated to �
ls�. As these ex-
pressions are rather complicated, we shall not give them
here. We have checked that by performing the limit N→�,
we recover the expression derived in Ref. 10.

The spectrum and eigenfunctions of the closed ring allow
us to write down the spectral representation of the discrete
Hamiltonian and the matrix elements of the retarded Green’s
function,

HR = 

l,s

Els�
ls��
ls� , �7�

gp�,p���
R �E� = 


l,s


ls��p��
ls�p����

E − Els + i0
. �8�

In the above equation, p , p� are sites along the ring and
� ,��= ↑ ,↓ select up and down components of �
ls�, that is,

ls�p��= �p� �
ls�. When the leads are attached to the ring,
the quantities one aims to compute are steady-state charge
and spin currents. As we shall show later on, the spin filter-
ing properties of the ring depend on the location of the con-
tacts. Therefore, it is useful to write HR in the basis 
p ,��.
This can be done using the transformation matrix R that
relates the two bases, i.e., �
ls�=
p,�Rp�,ls�p�� with

R =� cos
�l

2

l�p� − sin

�l

2

l�p�

sin
�l

2

l+1�p� cos

�l

2

l+1�p� .� �9�

The Hamiltonian can then be written as a 2N�2N matrix
with four N�N blocks,

Hp↑,p�↑
R = 


l


l�p�
l
��p���El+ cos2�l

2
+ El− sin2�l

2
� ,

Hp↑,p�↓
R = 


l

cos
�l

2
sin

�l

2

l�p�
l+1

� �p���El+ − El−�,

�10�

Hp↓,p�↓
R = 


l


l+1�p�
l+1
� �p���El+ sin2�l

2
+ El− cos2�l

2
� ,

Hp↓,p�↑
R = Hp�↑,p↓

R †. �11�

The spin-flip processes within the ring are included in the
off-diagonal parts of HR with respect to the spin orientation;
in the absence of the Rashba coupling �l=0, and both the
Hamiltonian and Green’s functions become block diagonal.
The latter can be computed using the explicit form of the
radial functions �
l� and will help us explain the behavior of
the spin currents as a function of the magnetic field,

gp↑,p�↑
R �E� =

1

N



l

e−i��p−�p��l� cos2�l

2

E − El,+ + i0
+

sin2�l

2

E − El,− + i0
� ,

�12�

gp↓,p�↓
R �E� =

1

N



l

e−i��p−�p��l� sin2�l

2

E − El,+ + i0
+

cos2�l

2

E − El,− + i0
� .

�13�

We remark that both El,+ and El,− are poles of the Greens’
functions and that their weights depend on the tilt angles. At
small angles �i.e., for small values of the Rashba strength or
large rings�, the diagonal elements of the Green’s functions
with respect to the 
↑ ,↓� basis are more sensitive to the poles
associated to + states for gp↑,p�↑

R and − states for gp↓,p�↓
R . It is

also important to observe that the exponential terms in Eqs.
�12� and �13� depend on the site indices; as we shall see in
Sec. III, the matrix elements associated to the contact sites
play a major role in transport.

Let us point out that when using lattice models for de-
scribing systems with spin-orbit coupling, one introduces a
generalized hopping parameter that includes a phase depend-
ing on the Rashba parameter �see, e.g., Ref. 13�. In our ap-
proach, this is not necessary, as we start from the spectral
representation �7� in the basis 
l ,s� and then change to the
representation 
p ,��.

We now introduce the total Hamiltonian of the coupled
system. For simplicity, we consider one-dimensional leads
described by a tight-binding Hamiltonian �the leads are semi-
infinite�. The coupling to the leads is included through a
tunneling Hamiltonian containing a smooth time-dependent
switching function ��t�. The role of this function is to ensure
that the systems are disconnected at some initial time so that
an equilibrium statistical operator can be defined; the steady-
state currents are however calculated at some later time when
the switching function is time independent and all the tran-
sients disappear. For simplicity, we assume that the incident
electrons from the leads do not flip their spin when entering
the ring and denote by V� the coupling strength to the lead �.
Each contact implies a pair of sites �0� , p��, where p� is the
site of the ring where the lead is attached, and 0� is the
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nearest site of the lead. Then the Hamiltonian reads as �H.c.
denotes Hermitian conjugate and tL is the hopping energy on
the leads�

H�t� = 

p,p�



�,��

Hp�,p���
R �p���p����

+ tL

�



n�,�

��n����n� + 1,�� + H.c.�

+ ��t�

�



�

�V��0����p��� + H.c.� . �14�

The steady-state current that enters the lead � is calculated
following standard steps within the nonequilibrium Green’s
function formalism.30 In the absence of electron-electron in-
teraction, the lesser and greater Green’s functions do not ap-
pear in the formula of the current and one only needs the
retarded and advanced Green’s functions of the coupled ring.
They can be computed from the Dyson equation,

GR = gR + gR

�

�R,�GR, �15�

where �R is the retarded self-energy of the leads

�p�,p���
R,� �E� =

�V��2

2tL
2 �pp�

�p�p�
�����E − i	4tL

2 − E2� . �16�

Note that the leads’ self-energy contributes with both real
and imaginary parts to the pole structure of the effective
Green’s functions GR,A.

The charge current that enters the ring from the lead � is
given by

J� =
e

h
�

−2tL

2tL

dE Tr
��GR��GA�f� − f��� ,

ªJ�,↑ + J�,↓. �17�

The linewidths ��,� are related to the density of states at the
end point of the lead ��E�=	4tL

2 −E2 /	 ��=� ,��,

�p�,p���
� �E� = �V��2�pp�

�p�p�
��E� . �18�

In the above equations, the trace means a sum over both site
indices and spin indices, i.e., Tr A=
�=↑,↓
p�p��A�p��. One
can then easily identify the spin currents J↑,↓ introduced
above. We stress here that the spin currents in the leads are
well defined because �z commutes with the Hamiltonian; if
we were to compute the currents within the ring, a refined
definition would be needed �see, e.g., Ref. 10�. It is also easy
to see that due to the structure of 
R,�, the matrix elements of
the Green functions that enter the expression of the currents
contain just the contact sites.

The spin filter is characterized by its efficiency

F↑,↓ =
J↑,↓

J↑ + J↓
. �19�

Clearly, F↑,↓ measures the spin polarization of the current in
the leads.

III. NUMERICAL RESULTS

Before presenting the numerical results, we shall give
some details about the discretization parameters and about
the connection to the continuous model. In the definition of
the hopping energy of the leads tL=�2 /2m�a2, we use the
discretization constant of the ring, that is, a=2	R /N. This
ensures that the energy of electrons in the leads �−2tL ,2tL� is
measured in the same units as the energy levels of the ring.
The strength of the Rashba interaction �R lies typically
in the range 0.1�10−11–2.5�10−11 eVm and we introduce
the dimensionless parameter QR= �� /R� /��0 �as usual
h�0=�2 /2m�R2, and m� is the effective mass of the elec-
tron�. We take equal coupling to the leads and we introduce
the notation V�=V�=�. The number of sites N is a free pa-
rameter and determines the number of eigenvalues of the
discrete ring. For a fixed ring radius R, the agreement be-
tween the continuous and discrete spectra improves as N
increases.

Since the spectrum of the closed Rashba ring plays a cru-
cial role in understanding the spin interference effects re-
ported below, we shall briefly discuss its properties. Figure 2
shows a few low-energy levels for a ring of radius
R=70 nm when both Rashba and Zeeman terms are present
in the Hamiltonian. The levels are given by analytical ex-
pressions both in the discrete and continuous cases. Alterna-
tively, they could be computed by diagonalizing the discrete
Hamiltonian described above. It turns out that for N=80
sites, the first 25 levels of the ring are in very good agree-
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FIG. 2. �Color online� The spectrum of a Rashba ring of radius
R=70 nm as a function of the magnetic flux. The solid �red� lines
represent the eigenvalues El,+ and the dotted �blue� lines are the
eigenvalues El,−. The degeneracies between clockwise and counter-
clockwise states are discussed in the text. We used N=80 sites for
discretizing the ring, which corresponds to a lattice constant
a=5.49 nm. The Rashba strength is �=0.5�10−11 eVm. The
dashed lines represent the chemical potentials of the two leads at-
tached to the ring.
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ment with the continuous levels and, therefore, we can bor-
row their analytical form from the continuous case �see, e.g.,
Ref. 10�,

El,� = ��0�l −
�

�0
+

1

2
�

1

2 cos �l
�2

+
��0

4
�1 −

1

cos2 �
� �

��z

cos �
. �20�

From Fig. 2, we infer that there are particular degeneracy
points in the spectrum. First, there is a crossing between
clockwise �CW� and counterclockwise �CCW� propagating
states with different spin orientation whenever �n=n�0 /2.
The states with the same spin orientation in the local spin
frame but propagating in opposite directions also cross at
two values of the flux, which are symmetrically located with
respect to �n.

The spin filter configuration is realized when two leads
with different chemical potentials are attached to the ring.
Figure 3�a� presents the spin currents entering the lead � as a
function of the magnetic flux. Naturally, in the steady state,
the current conservation implies that the charge currents
obey the identity J�=−J�; in all subsequent numerical calcu-
lations, this condition is fulfilled. The leads are coupled to
opposite sites, more precisely, p�=N /2+1 and p�=1. We
observe the following features: �i� both spin currents exhibit
successive sudden drops, which make the spin filtering pos-
sible; �ii� the flux values associated to these drops are always
around half-integer multiples of flux quanta; �iii� apart from
these regions, the two currents are quite comparable and,
therefore, a good spin filtering regime is not to be found at
any magnetic field. On top of these features, a comparison to
the spectrum in Fig. 2 reveals that the sharp minima of the
spin currents correspond to degeneracy points between + or
between − states that travel clockwise and counterclockwise.

Figure 3�b� shows the spin-up and spin-down efficiencies
for two values of the Rashba strength. As expected from Fig.
3�a�, F↑ and F↓ have maxima at the degeneracy points. The
increase of � results in larger spacing between the current
spikes but also to a reduction in the efficiency.

The above observations suggest that when the filter se-
lects a spin-down �up�, the clockwise and counterclockwise
+ �−� waves interfere destructively in the ring and therefore
suppress the spin-up �down� current. This feature is reminis-
cent of what happens in the ring in the absence of the spin-
orbit coupling. In that case, one has degeneracies of CW and
CCW states only at �n=n�0 /2 �i.e., El��n�=E−l+n��n��.
Then the symmetric location of the leads implies that the
exponential term in Eq. �12� reduces to cos 	l and that the
relevant matrix element of the retarded Green’s function
g1,�N/2+1�

R �see Eq. �12�� can be rewritten as



l
� cos�	l�

E − El��n� + i0
−

cos 	i�l − n�
E − E−l+n��n� − i0

� �21�

and vanishes when �=�n for any odd n. On the other hand,
if n is even, the two contributions add to each other. The
exact cancellations at �n for n odd simply mean that the
clockwise and counterclockwise waves interfere destruc-
tively. Our results suggest that the same thing happens in the
presence of the Rashba coupling, the difference being that
the degeneracy points between CW and CCW states with the
same spin in the local frame are shifted symmetrically with
respect to �n. This behavior of the Green’s function trans-
lates to the Green’s functions of the open ring and hence on
the spin currents. In Figs. 4�a� and 4�b�, we give the trans-
mittances T��= �e2 /h��Gp��,p���2 as a function of magnetic
flux and energy ��= ↑ ,↓�. The bright traces evidently mimic
the + and − parts of the closed ring spectrum �similar plots
were reported by Cohen et al.25 for molecular rings in the
presence of a Zeeman coupling only�. Around the degen-
eracy points, two traces come close to one another. However,
at the degeneracy points located near half-integer multiples
of �0, the transmittances corresponding to ↑ and ↓ vanish.
This behavior explains the sudden drop of the spin currents
at those points since they are roughly obtained by integrating
over energy the transmittances. It also supports the discus-
sion about the destructive interference between + or − states
around half-integer multiples of �0. Another important ob-
servation is that the tilt angle determines up to what extent
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FIG. 3. �Color online� �a� The spin-up �solid line� and spin-down �dashed line� currents for the 70 nm ring coupled to two leads. The bias
is given by eV=��−��, where ��=15.5 meV and ��=10.5 meV �these values are also marked on the spectrum shown in Fig. 2�. The
Rashba parameter is �=0.5�10−11 eVm. �b� The spin filter efficiencies F↑ and F↓ for two values of the Rashba strength
�=1.0�10−11 eVm �F↑: solid line; F↓: long-dashed line; ��15°� and �=0.5�10−11 eVm �F↑: dashed line; F↓: dotted line; ��22°�. By
increasing the Rashba strength, the filter efficiency decreases by almost 10%. Other parameters �=0.35, kT=10 �eV.
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the destructive interference between + states, which is
mostly responsible for the drop of J↑ also affects J↓. From
Eqs. �12� and �13�, we see that at small �, one has
sin ��1 and, therefore, the destructive interference between
the + states is not important for the ↓ component of the
Green’s function. The situation changes if we increase the
Rashba strength: � increases and J↓ and J↑ will both drop.
This is why at �=1.0 the filter efficiency decreases.

We should point out that a similar suppression of the spin
currents at flux values symmetrically located from
�=�0 /2 was reported by Citro et al.19 The authors investi-
gated the spin interference in a ring with a side-coupled dot
and focused on a hysteresis effect due to the intradot Cou-

lomb interaction. The connection between the spin filtering
and the spectral properties of the ring was not revealed.

We further investigate the efficiency of spin filtering for
rings of different size, while keeping the Rashba coupling
fixed �i.e., �=0.5�10−11 eVm�. We present in Figs.
5�a�–5�c� results for R=60, 90, and 120 nm rings. The spin
filter efficiency decreases to 80% for the larger ring, but the
advantage is that the separation between the points of de-
structive interference is better. This could be crucial in ex-
periments where it would be difficult to observe spin filtering
by tuning the magnetic field by a few mT only. For the 60
nm ring, we find that the difference between the magnetic
fields corresponding to the two minima located around
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=0.5 is �B=3.5 mT while for the 90 nm ring
�B=22 mT.

As we have stated already, the Zeeman term is included in
our numerical simulations. This term can be neglected in the
so-called adiabatic regime when �z��0. However, for a ring
with R=90 nm it turns out that if 
� �2
0 ,3
0� the mag-
netic field ranges from 0.24 to 0.155 T, and in this range one
has �0 /�z�2.3. Then we selected a region from the spec-
trum of the ring, where the energies of the clockwise and
counterclokwise spin + /− states experience various cross-
ings. In Figs. 6�a� and 6�b�, we present these crossings with
and without the Zeeman term. The effect of the Zeeman term
is evident: it twists and shrinks the rhomboidal configuration
of the four crossing points seen in the absence of the Zeeman
term �note that it this case, there are two degeneracy points at

=2.5
0�. However, the effect of the Zeeman term on the
spectrum does not significantly alter the spin filtering. The
spin currents computed with and/without the Zeeman term
shown in Figs. 6�c� and 6�d�, respectively, are rather
similar—the only difference is that in the absence of the
Zeeman term, a mirror symmetry with respect to 
=2.5
0 is
noticed.

The next step in our analysis refers to the robustness of
the spin filter �i.e., of its efficiency� with respect to the varia-
tions in the bias. To this end, we fixed the magnetic flux to a
value, which corresponds to a degeneracy point for the states
in the ring and we varied the chemical potential of the left
lead. The results for rings of radii R=60, 70, and 90 nm are
shown in Fig. 7. It is obvious that in all three cases, the
spin-up currents increase steplike as more levels of the ring
enter the bias window, while the spin-down currents remain
much smaller. Thus, the destructive interference between
states guarantees a good filter efficiency even at a finite bias.

For rings of 70 and 90 nm, the spectrum is more dense,
leading to a large number of steps in the spin-up currents.

In the numerical simulations, we have used the same
number of sites N=120 for the three rings, which means that
the lattice constant a=2	R /N increases with the ring radius.
In turn, this implies that the currents measured in units of
etL /� decrease when the ring radius increases since
tL=�2 /2m�a2.

We have also performed numerical simulations for other
temperatures and found that while the currents are affected
by the increase in the temperature the filter efficiency is still
very good.
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FIG. 6. �Color online� �a� A crossing region from the spectrum of a ring having R=90 nm in the presence of the Zeeman term. �b� The
same region when the Zeeman term is disregarded in the calculation. We remark that the Zeeman term destroys the symmetry of the spectrum
with respect to 
=2.5
0. �c� The spin currents as a function of the magnetic flux when the Zeeman term is considered �spin up: solid line;
spin down: dashed line�. �d� The same, in the absence of the Zeeman term. Other parameters: �=0.75, �=0.5�10−11 eVm, and
kT=10 �eV.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14

C
ur

re
nt

(n
A

)

Bias (meV)

R=60nm
R=70nm
R=90nm

FIG. 7. �Color online� The spin-up �steplike increasing curves�
and spin-down currents �slowly increasing curves at the bottom� in
the right lead as a function of bias eV=��−�� for rings of different
radii. We keep ��=0.0105 and vary ��. The magnetic fluxes are
chosen that the states in the ring interfere destructively so that the
spin-down currents are almost suppressed. Other parameters:
�=0.5, �=0.5�10−11 eVm, and kT=10 �eV.

TUNABLE SPIN CURRENTS IN A BIASED RASHBA RING PHYSICAL REVIEW B 81, 035326 �2010�

035326-7



Our previous analysis of the Green’s functions for both
closed and open rings was done for the rather particular case
of symmetric coupling, i.e., p�− p�=N /2. What happens if
we change the right contact by taking p�=N /8? The asym-
metry can be conveniently described by the angle � between
the two leads �in this case, the angle between the two leads is
now 135°�? An asymmetric setup of the leads means that the
clockwise and counterclockwise spin states acquire different
AB and AC phases while propagating toward the right lead
because the paths they experience are of different length.
This will presumably alter their interference at the contact
point and, hence, the outgoing charge and spin currents.
From Fig. 8, we see that the ring still filters up or down
spins, but a comparison with Fig. 3�a� reveals a striking dif-
ference: the flux values at which the filter operation is effec-
tive are symmetrically located to the left and right sides of
the integer multiples of flux quanta instead of half-integer as
before.

We show in Figs. 9�a� and 9�b� the corresponding trans-
mittances for the coupled ring. One should notice the pres-
ence of minima around integer multiples of �0 and their
correspondence to the sharp drops of the spin-up and spin-
down currents.

We have also analyzed the oscillations of the charge cur-
rent as a function of the dimensionless parameter QR defined
at the beginning of this section. Figure 10 shows the results

at vanishing magnetic fields. In the case of symmetric cou-
pling, the result is in full agreement with the previous con-
ductance calculations by Frustaglia and Richter;11 one should
note that the oscillation period in our case in also larger that
unity, as was reported in Ref. 7. This difference is due to the
fact that in Ref. 7, it is assumed that the spinors of the ring
are aligned with the effective magnetic field given by the
Rashba coupling. We also show oscillations for two asym-
metric coupling configurations, i.e., p�=N /8 and p�=7N /8.
The differences are rather striking: the previous maxima turn
to minima in both asymmetric configurations and we also
observe twin local maxima. Each such doublet has different
amplitudes, the difference increasing with the Rashba
strength. The asymmetry of the doublet is reversed by chang-
ing the angle between the leads from 45° to 315°. Note how-
ever that the period of the oscillations does not change.

This behavior of the current suggests that, similar to what
we observed when the magnetic flux varies, the nature of the
interference within the ring also changes in the asymmetric
configuration when the Rashba coupling is changed. Note
also that even at �=0, the symmetric configuration leads to
maxima in the current, while in the asymmetric configuration
minima are found at the same location. The different ampli-
tudes of the twin local maxima �in the asymmetric case�
could be due to separate interference between spin + and
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spin − states that are separated in the presence of the Rashba
coupling.

IV. CONCLUSIONS AND OPEN PROBLEMS

In this work, we have presented theoretical calculations
for the electronic transport in a Rashba interferometer sub-
jected to a perpendicular magnetic field and coupled to two
leads in various geometries. The spin currents were com-
puted using the nonequilibrium Green’s functions �Keldysh�
formalism. By analyzing the spectrum of the closed ring and
the relevant Green’s functions of the open ring, we were able
to identify a class of optimal parameters for the spin filter
operation �e.g., special values of the magnetic field�. We
have emphasized the connection between a good efficiency
of the spin filter and the degeneracy points between different
spin states within the ring. The symmetric coupling to the
leads is an optimal configuration for spin filtering. Our nu-
merical results show that even at a finite bias and moderate

Rashba strength, one should get up to 95% spin-polarized
currents in the leads. The oscillations of the current as a
function of the Rashba strength are analyzed as well both for
symmetric and asymmetric configurations. We show that an
asymmetric coupling to the leads turns maxima into minima
and induces double peak structures in the current oscilla-
tions. Here, we have considered uniform Rashba strength
along the wire and performed calculations for electronic
transport. However, one could also investigate the effect of
an inhomogeneous Rashba coupling for both holes and
electrons.15,31
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